Examples

1. Prove that $\lim _{n \rightarrow \infty} \frac{n+1}{n^{2}}=0$.
2. Prove that $\lim _{n \rightarrow \infty} \frac{2 n}{n^{2}+3}=0$.
3. Prove that $\lim _{n \rightarrow \infty} \frac{2 n}{n^{2}-3}=0$.
4. Prove that $\lim _{n \rightarrow \infty} \frac{n^{2}+2 n}{n^{3}-5}=0$.

Some Properties of Real Nmbers

The following is assigned for homework.
Proposition. (10.4) Let $x, y \in \mathbb{R}$. The $x=y$ if and only if $\forall \varepsilon>0$ we have $|x-y| \leq \varepsilon$.

Some properties of limits

Theorem If a sequence $\left(a_{n}\right)$ converges, then its limit is unique.

Theorem Every convergent sequence must be bounded.

Theorem Algebraic rules for sequences: Let $\lim _{n \rightarrow \infty} s_{n}=s$ and $\lim _{n \rightarrow \infty} t_{n}=t$.
(a) For $k \in \mathbb{R}, \lim _{n \rightarrow \infty} k s_{n}=k \lim _{n \rightarrow \infty} s_{n}=k s$.
(b) $\lim _{n \rightarrow \infty}\left(s_{n}+t_{n}\right)=s+t$.
(c) $\lim _{n \rightarrow \infty}\left(s_{n} \cdot t_{n}\right)=s \cdot t$.
(d) For all $n, s_{n} \neq 0$ and $s \neq 0, \lim _{n \rightarrow \infty} \frac{1}{s_{n}}=\frac{1}{s}$ and $\lim _{n \rightarrow \infty} \frac{t_{n}}{s_{n}}=\frac{t}{s}$.

Definition

(1) If $\forall M>0, \exists N$ such that $\forall n>N, n \in \mathbb{N}, s_{n}>M$, then the sequence diverges to $+\infty$. We write $\lim _{n \rightarrow \infty} s_{n}=+\infty$.
(2) If $\forall M<0, \exists N$ such that $\forall n>N, n \in \mathbb{N}, s_{n}<M$, then the sequence diverges to $-\infty$. We write $\lim _{n \rightarrow \infty} s_{n}=-\infty$.

Examples

1. Give a formal proof that $\lim _{n \rightarrow \infty}(\sqrt{n}+7)=+\infty$.
2. Prove that $\lim _{n \rightarrow \infty} \frac{n^{2}+4}{n+2}=+\infty$.
3. Prove that $\lim _{n \rightarrow \infty} \frac{n^{3}}{1-n}=-\infty$.
