Examples

1. Prove that
$$\lim_{n \to \infty} \frac{n+1}{n^2} = 0.$$

2. Prove that
$$\lim_{n \to \infty} \frac{2n}{n^2 + 3} = 0.$$

3. Prove that
$$\lim_{n \to \infty} \frac{2n}{n^2 - 3} = 0.$$

4. Prove that
$$\lim_{n \to \infty} \frac{n^2 + 2n}{n^3 - 5} = 0.$$

Some Properties of Real Nmbers

The following is assigned for homework.

Proposition. (10.4) Let $x, y \in \mathbb{R}$. The x = y if and only if $\forall \varepsilon > 0$ we have $|x - y| \le \varepsilon$.

Some properties of limits

Theorem If a sequence (a_n) converges, then its limit is unique.

Theorem Every convergent sequence must be bounded.

Theorem Algebraic rules for sequences: Let $\lim_{n\to\infty} s_n = s$ and $\lim_{n\to\infty} t_n = t$.

(a) For $k \in \mathbb{R}$, $\lim_{n \to \infty} ks_n = k \lim_{n \to \infty} s_n = ks$.

(b)
$$\lim_{n \to \infty} (s_n + t_n) = s + t.$$

(c)
$$\lim_{n \to \infty} (s_n \cdot t_n) = s \cdot t.$$

(d) For all
$$n, s_n \neq 0$$
 and $s \neq 0, \lim_{n \to \infty} \frac{1}{s_n} = \frac{1}{s}$ and $\lim_{n \to \infty} \frac{t_n}{s_n} = \frac{t}{s}$.

Definition

- (1) If $\forall M > 0$, $\exists N$ such that $\forall n > N$, $n \in \mathbb{N}$, $s_n > M$, then the sequence diverges to $+\infty$. We write $\lim_{n \to \infty} s_n = +\infty$.
- (2) If $\forall M < 0$, $\exists N$ such that $\forall n > N$, $n \in \mathbb{N}$, $s_n < M$, then the sequence diverges to $-\infty$. We write $\lim_{n \to \infty} s_n = -\infty$.

Examples

1. Give a formal proof that $\lim_{n \to \infty} (\sqrt{n} + 7) = +\infty$.

2. Prove that
$$\lim_{n \to \infty} \frac{n^2 + 4}{n+2} = +\infty.$$

3. Prove that
$$\lim_{n \to \infty} \frac{n^3}{1-n} = -\infty$$
.